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Abstract

The abilities to learn and to categorize are fundamental for cognitive
systems, be it animals or machines, and therefore have attracted attention
from engineers and psychologists alike. Modern machine learning meth-
ods and psychological models of categorization are remarkably similar,
partly because these two fields share a common history in artificial neural
networks and reinforcement learning. However, machine learning is now
an independent and mature field that has moved beyond psychologically
or neurally inspired algorithms towards providing foundations for a theory
of learning that is rooted in statistics and functional analysis. Much of
this research is potentially interesting for psychological theories of learn-
ing and categorization but also hardly accessible for psychologists. Here,
we provide a tutorial introduction to a popular class of machine learn-
ing tools, called kernel methods. These methods are closely related to
perceptrons, radial-basis-function neural networks and exemplar theories
of categorization. Recent theoretical advances in machine learning are
closely tied to the idea that the similarity of patterns can be encapsulated
in a positive definite kernel. Such a positive definite kernel can define a
reproducing kernel Hilbert space which allows one to use powerful tools
from functional analysis for the analysis of learning algorithms. We give
basic explanations of some key concepts—the so-called kernel trick, the
representer theorem and regularization—which may open up the possibil-
ity that insights from machine learning can feed back into psychology.

Machine learning is occupied with inventing computer algorithms that are
capable of learning. For example, a machine that is equipped with a digital
camera is shown instances of handwritten digits. Imagine an application where
postal codes on letters have to be recognized so that the letters can be sorted
automatically. The machine is shown many instances of each digit and has to
learn to classify new instances based on the experience with the old ones. The
prospect of not having to program a machine explicitly but rather having a
machine learn from examples has attracted engineers to study learning since
the early days of artificial intelligence. In their quest for intelligent machines
early research was inspired by neural mechanisms and ideas from reinforcement
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learning. However, for practical applications researchers in machine learning
also need to take technical constraints (like scalability, robustness and speed)
into account. Furthermore, a good understanding of what the algorithm does,
perhaps even with performance guarantees, would be very desirable if the algo-
rithm was to be used in practice. Usually these constraints require techniques
and insights from statistics, optimization and complexity theory that make the
algorithm implausible as a psychological model of learning. Nevertheless, some
of the methods used in machine learning are still strikingly similar to models
that are discussed in psychology. Many of the ideas about learning that can
be found in the machine learning literature are certainly based on the same
intuitions that psychologists have.

Kernel methods, in particular, can be linked to neural network models and
exemplar theories of categorization. Psychologically speaking, a kernel can of-
ten be thought of as a measure for stimulus similarity. In a category learning
task it seems natural to assume that the transfer from old to new stimuli will
depend on their similarity. In fact, this idea can be found throughout machine
learning and psychology. As categorization is an important cognitive ability it
has received a lot of attention from machine learning and psychology. It is also
in categorization models that the similarity between machine learning methods
and psychological models becomes most obvious.

This paper is a tutorial on kernel methods for categorization. These meth-
ods try to tackle the same problems that human category learners face when
they try to learn a new category. Hence, we think that the mathematical tools
that are used in machine learning show a great potential to be also useful for
psychological theorizing. Even if most of the solutions that machine learning of-
fers turned out to be psychologically implausible, psychologists should still find
it interesting to see how a related field deals with similar problems—Especially
as machine learning methods are increasingly used for the analysis of neural
and behavioral data. At the very least, this paper provides an introduction to
these new tools for data analysis. We find, however, that some of the meth-
ods in machine learning are closely related to categorization models that have
been suggested in psychology. Briefly, some kernels in machine learning are akin
to a class of similarity measures considered in psychology. This class of simi-
larity measures is based on Shepard’s universal law of generalization and has
been used extensively in exemplar models of categorization (Nosofsky, 1986;
Kruschke, 1992). Kernel methods are also like exemplar models in other re-
spects: They usually store all the exemplars they have encountered during the
course of learning and they can be implemented in a neural network. In two
related papers we have used some of the results presented here to clarify the
relationship between similarity and generalization in categorization models and
to resolve some conceptual problems with popular models of similarity (Jäkel
et al., 2007a,b). These other two papers focus on the psychological aspects of
kernels, whereas in this paper we concentrate more on the mathematical aspects.

There are several useful introductions to kernel methods in the machine
learning literature but none of them is addressing psychologists directly—hence
this paper. Most of the technical material we present is based on two recent
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books on kernel methods (Christianini and Shawe-Taylor, 2000; Schölkopf and
Smola, 2002) and standard results in linear algebra (Strang, 1988, e.g.). We will
assume that the reader has had some previous exposure to linear algebra, for
example in the context of artificial neural networks or psychometrics. However,
in order to make the paper accessible to a larger audience we included reminders
of relevant results throughout the text.

1 Inner products

So what is a kernel? Kernels can be regarded as a non-linear generalization of
inner products. We will take a little detour before explaining kernels and discuss
the relationship between inner products, perceptrons and prototypes. This will
set the stage on which kernels appear naturally to solve non-linear classification
problems.

1.1 Perceptrons

The perceptron can be considered the most basic of all pattern recognition algo-
rithms. It was conceived as a simple model for learning in the brain (Rosenblatt,
1958). A pattern x, in the form of n real numbers x1 to xn, is fed into a neuron.
The inputs are weighted by the synaptic strengths w of the n connections to the
neuron. There are n real numbers w1 to wn that represent the synaptic strength
of each input. The neuron integrates all its weighted inputs by summing them
up:

〈w, x〉 =

n
∑

i=1

wixi. (1)

If the excitation of the neuron is greater than a threshold value θ the neuron
fires. The excitation is a linear combination of the inputs. For this reason the
perceptron is also referred to as a linear classifier. Mathematically speaking,
the neuron calculates the standard inner product, denoted with brackets 〈·, ·〉,
of the vector x with the vector w, both of which are elements in a n-dimensional
vector space. Inner products are also called dot products or scalar products in
linear algebra.

A vector space with an inner product 〈·, ·〉 is a very rich representation and
has a natural measure of length and angle that conforms to intuitions about
Euclidean space. The length or norm ‖·‖ of any vector w can naturally be
defined with the help of the inner product as:

‖w‖2
=

n
∑

i=1

w2

i = 〈w, w〉 . (2)

By using Pythagoras’ theorem one can find that this is in agreement with Eu-
clidean intuitions. All the familiar properties of Euclidean space can be ex-
pressed in terms of the standard inner product. The distance d(·, ·) between
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two points x and y in the space can then be defined as the length of their
difference vector

d(x, y) = ‖x − y‖ =
√

〈x − y, x − y〉. (3)

This distance can be used to define a metric on the space. Moreover, the angle
α between two vectors v and w can be expressed as

cosα =
〈v, w〉
‖v‖ ‖w‖ . (4)

In particular, two vectors are perpendicular whenever their inner product is
zero.

Geometrically speaking, the weight vector together with the threshold can
be interpreted as the normal vector of a hyperplane. Checking whether the
inner product is bigger than the threshold is equivalent to checking which side
of the hyperplane a pattern vector x falls on. In this way a simple classification
can be implemented by separating the vector space into the two parts on both
sides of the hyperplane. This is illustrated in Figure 1. The figure shows a
two-dimensional space and each point in the space defines a possible pattern.
There are two classes of patterns (circles and crosses) and several instances of
each class are shown. A vector w pointing away from the origin is depicted
together with its hyperplane 〈w, x〉 = 0, that is the set of all points x that are
perpendicular to w. If the inner product between w and x is greater than zero
the two vectors form an angle that is less than 90 degrees, hence w and x lie
on the same side of the hyperplane. It is possible to shift the hyperplane along
the vector w by changing the threshold parameter θ. In this example we have
chosen w and θ such that the hyperplane that they define can correctly separate
the circles from the crosses. In general, the learning problem for the perceptron
is to find a vector w and a threshold θ that separates two classes of patterns as
well as possible. It is a very common view to see learning as adapting weights
in a neural network. There is a long list of learning algorithms that try to
accomplish this task of which the perceptron learning algorithm is just one.

1.2 Prototypes

Take the psychologically rather than neurally motivated example of a prototype
learner (Posner and Keele, 1968; Reed, 1972). The learning machine is given a
set of patterns A that are known to belong to one class and a set of patterns
B that are known to belong to another class. The prototype learner is usually
understood as trying to extract the central tendency of the two classes. Hence,
to separate A from B the arithmetic means of all examples in A and B are
calculated: a = 1

|A|

∑

aεA a and b = 1

|B|

∑

bεB a. A new pattern x is classified

as belonging to class A if it is closer to a (the mean of A) than to b (the mean
of B). We can take “closer” to mean Euclidean distance in the vector space in
which the patterns are given. The Euclidean distance between two points x and
y is given by the square root of the inner product of the difference vector with
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Figure 1: Each perceptron defines a hyperplane in a vector space. The weight
vector w is the normal vector of this hyperplane and the threshold θ defines the
offset from the origin. On one side of the hyperplane (the side that w points
to) the inner product of all points with w is greater than θ. On the other side
the inner product is smaller than θ. In this example we have chosen w and θ so
they can separate the circles from the crosses.
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itself: 〈x − y, x − y〉 (Eq. 3). Therefore, a Euclidean prototype classifier decides
that a new stimulus x belongs to class A whenever

〈

x − b̄, x − b̄
〉

> 〈x − ā, x − ā〉
〈x, x〉 − 2

〈

b̄, x
〉

+
〈

b̄, b̄
〉

> 〈x, x〉 − 2 〈ā, x〉 + 〈ā, ā〉
2 〈ā, x〉 − 2

〈

b̄, x
〉

> 〈ā, ā〉 −
〈

b̄, b̄
〉

〈

ā − b̄, x
〉

>
1

2

(

〈ā, ā〉 −
〈

b̄, b̄
〉)

〈

ā − b̄, x
〉

> θ. (5)

Remember that the definition of the inner product 〈·, ·〉 involves a sum and
therefore it is linear in both arguments: For all x, y and z it holds that
〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 and also that 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉. We have
used this property extensively in the above derivation. From the last line of (5)
it can be seen that the prototype classifier defines a hyperplane in the input
space just as the perceptron in Eq. (1) does. The weight vector w is given by
the difference of the means ā − b̄ and the threshold θ by the right hand side
1

2

(

〈ā, ā〉 −
〈

b̄, b̄
〉)

. However, θ is really just a bias parameter that determines
which of the two category responses is preferred and might be chosen differently.
The crucial fact is that for the prototype classifier we take an inner product with
the difference vector of the means.

1.3 Positive definite matrices

The inner product defined in Eq. (1) is called the standard inner product be-
cause it naturally arises in the context of Euclidean spaces. In general, an inner
product 〈·, ·〉 has to fulfill three formal properties that ensure that the norm,
distance and angle will behave as in Euclidean space. First, it has to be sym-
metric: For all real-valued vectors w and v it holds that 〈w, v〉 = 〈v, w〉. This
reflects the fact that the (absolute) angle between two vectors does not depend
on whether it is measured from w to v or from v to w. Second, an inner product
has to be linear in its arguments, that is for a real number a and three vectors u,
v and w it holds that 〈au, v〉 = a 〈u, v〉 and 〈u + w, v〉 = 〈u, v〉+ 〈w, v〉. Because
of the symmetry an inner product is linear in both arguments. Third, an inner
product has to be positive definite. By positive it is meant that 〈w, w〉 ≥ 0 for
all w. Definiteness refers to 〈w, w〉 = 0 if and only if w = 0. Positive definiteness
is a natural requirement for a length measure. Remember that the inner prod-
uct of a vector with itself 〈w, w〉 defines the square of the length of the vector

‖w‖2
and the squared length always has to be positive and is only zero for the

zero vector. It is easily verified that the standard inner product (1) fulfills all
three axioms.

The standard inner product is by no means the only interesting inner prod-
uct. A generalization that will be very important in the following is given by

〈w, v〉K =

n
∑

i=1

n
∑

j=1

wivjkij . (6)
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Figure 2: Whether a prototype classifier can separate two classes depends also
on the inner product that is chosen. The left panel shows two classes (circles
and crosses) with highly correlated dimensions—in this case the standard inner
product is not appropriate. The thick dashed line depicts the decision bound
for a prototype classifier when the standard inner product is used. The dotted
line depicts a decision bound with a different inner product. This inner product
corresponds to the standard inner product in the space depicted on the right
that can be obtained by rotating and rescaling the original space.

Taking K to be a matrix with entries kij and T to denote the transpose of
a matrix (rows and columns exchanged) the definition can be written more
elegantly as a matrix multiplication

〈w, v〉K = wT Kv. (7)

If K is the identity matrix the standard inner product (1) is recovered. In order
for this definition to result in an inner product the three axioms have to be
fulfilled. Symmetry depends on the symmetry of K. If kij = kji for all i and j

then the definition in (6) will be symmetric. As a consequence of the linearity of
the sum it is immediately clear that (6) is always linear. It remains to demand
positive definiteness. The inner product defined in Eq. (6) is positive definite
if the matrix K is positive definite, that is for all vectors w the quadratic form
that defines the squared length of the vector ‖w‖2

is positive,

wT Kw ≥ 0, (8)

and zero if and only if w is zero. It is a standard result in linear algebra that
symmetric positive definite matrices can be decomposed into principal compo-
nents. Principal component analysis (PCA) is used frequently in the analysis
of psychological data, for example covariance matrices are positive definite and
they are often subjected to PCA. There is a rotation matrix U and a diagonal
matrix Λ that contains only positive eigenvalues such that K = UT ΛU . With
this result the inner product (7) can be rewritten as

〈w, v〉K = wT Kv
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= wT
(

UT ΛU
)

v

= wT
(√

ΛU
)T (√

ΛU
)

v

=
(√

ΛUw
)T (√

ΛUv
)

=
〈√

ΛUw,
√

ΛUv
〉

.

Remember that for any two matrices A and B that can be multiplied (AB)T =
BT AT . By using U the vectors v and w are rotated such that they coincide with
the principal components. After that they are rescaled using the diagonal matrix√

Λ. In this coordinate system the inner product 〈w, v〉K amounts to a standard
inner product. In order for K to implement an inner product all eigenvalues have
to be positive. Otherwise there could be vectors with a squared length smaller
than zero—clearly in contradiction with Euclidean intuitions. Note also that
if some eigenvalues were zero then there would be vectors, other than the zero
vector, with a length zero. All this illustrates the close connections between the
standard inner product, Euclidean space and positive definite matrices. Positive
definite matrices can define an inner product. If the coordinate axes are rotated
and rescaled appropriately this inner product becomes a standard inner product
and therefore can induce a norm, a metric and angles that behave like the
familiar Euclidean ones.

1.4 Prototypes and orthogonality

As an example consider the following classification problem. The left panel of
Figure 2 shows two categories drawn from two Gaussian distributions. Each
point is a stimulus that is described by two dimensions. The dimensions are
highly correlated for both stimulus classes. On a first glance a prototype learner
will not find a good decision bound to separate the two classes. The decision
bound that results from the standard prototype classifier is depicted as the thick
dashed line. As the decision bound is orthogonal to the shortest connection
between the two means it cannot pay due respect to the correlations in the
classes. On a first glance one could think that the problem is that the prototype
classifier cannot deal with correlation and therefore such a problem cannot be
solved by a prototype classifier. However, the problem does not actually lie
in the prototype classifier as such, it lies in the inner product that is used to
define orthogonality. A prototype learner that does not fail for even the simplest
category structures should take the covariance of the stimulus dimensions into
account (Reed, 1972; Fried and Holyoak, 1984; Ashby and Gott, 1988). If we
take the inner product 〈·, ·〉K to be given by a positive definite matrix K that is
the inverse of the covariance matrix of the classes we get the right definition of
orthogonality. The resulting decision bound is depicted as a dotted line. K is
the inverse of a positive definite matrix (covariance matrices are always positive
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Figure 3: The crosses and the circles cannot be separated by a linear perceptron
in the plane.

definite) and is therefore also a positive definite matrix. Hence, it corresponds
to the standard inner product after rotating and scaling the space with the
matrices U and

√
Λ. The middle panel in Figure 2 shows the rotated space and

the right panel shows the space after scaling.

1.5 Non-linear classification problems

A linear classifier like the perceptron is a very attractive method for classifi-
cation because it builds on strong geometric intuitions and the extremely well-
developed mathematics of linear algebra. However, there are problems that a
linear classifier cannot solve—at least not directly. As several psychological the-
ories of categorization are based on linear classifiers this issue has also attracted
some attention in the psychological literature (Medin and Schwanenflugel, 1981;
Smith et al., 1997). One example of a problem that cannot be solved with a
linear classifier can be seen in Figure 3. For a long time, the most popular
approach to solve non-linear problems like this one was to use a multi-layer
perceptron. Multi-layer perceptrons are known to be able to approximate any
function (Hornik et al., 1989) and can be trained efficiently by using the back-
propagation algorithm (Rumelhart et al., 1986). The approach that will be
presented here is fundamentally different. The strategy is to use a non-linear
function to map the input patterns into a space where the problem can be solved
by a linear classifier. The following toy-example illustrates this approach.

Figure 3 shows examples from two classes (crosses and circles) that cannot
be separated by a hyperplane in the input space (i.e. a straight line in two
dimensions). Instead of trying to classify the examples in the input space that
is given by the values x1 and x2 the data are transformed in a non-linear way.
Linear classification of the data is then attempted in the transformed space.
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Figure 4: The crosses and circles from Figure 3 can be mapped to a three-
dimensional space in which they can be separated by a linear perceptron.

In machine learning such a non-linear transform is called a feature map and
the resulting space a feature space. The term “feature” is already heavily over-
loaded in psychology. Therefore we will use the more neutral terms linearization
function and linearization space instead. The term linearization space was used
in an early paper on kernel methods (Aizerman et al., 1964). For example,
consider the following linearization function Φ : R

2 7→ R
3

Φ(x) =





φ1(x)
φ2(x)
φ3(x)



 =





x2

1√
2x1x2

x2

2



 . (9)

This transformation maps the example patterns to a three-dimensional space
that is depicted in Figure 4. The examples live on a two-dimensional manifold
of this three-dimensional space. In this space the two classes become linearly
separable, that is it is possible to find a two-dimensional plane such that the
circles fall on one side and the crosses on the other side. This shows that with
an appropriate non-linear transformation of the input a simple linear classifier
can solve the problem. The linearization approach is akin to transforming the
data in data-analysis before fitting a linear model. In the current example each
hyperplane in the linearization space defines a quadratic equation in the input
space. Hence, it is possible to deal with quadratic (i.e. non-linear) functions
by only using linear methods. In general, the strategy is to preprocess the data
with the help of a function Φ such that a linear perceptron model is likely to be
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applicable. Formally this can be expressed as

〈w, Φ(x)〉 =

n
∑

i=1

wiφi(x), (10)

where n is now the dimension of the linearization space and w is a weight vector
in the linearization space. It is clear that there is a wide variety of non-linear
functions that can be used to preprocess the input. In fact, this approach was
very popular in the early days of machine learning (Nilsson, 1965). The problem
is of course that the function Φ has to be chosen before learning can proceed.
In our toy example we have only shown how one can use linear methods to deal
with quadratic functions but usually one will not know in advance whether it is
possible to separate the data with a quadratic function. However, if Φ is chosen
to be sufficiently flexible, for example instead of a quadratic function with only
three coefficients one could choose a high order polynomial with many coeffi-
cients, then it may be possible to approximate even very complicated decision
functions. This comes at the cost of increasing the dimensionality of the lin-
earization space and the number of free parameters. Therefore early machine
learning research has tried to avoid this. After Minsky and Papert (1967) could
show that some interesting predicates cannot be separated by any finite dimen-
sional perceptron, not even by choosing a polynomial of a very high degree, the
promises of flexible, linear perceptrons seemed rather dim for many practical
applications. Only later did researchers in machine learning discover that by
using kernels they could easily build infinite dimensional perceptrons that seem
powerful enough for all practical purposes.

2 Kernels

The next section will introduce the kernel trick that makes it possible to work
with high dimensional (even infinite dimensional) and flexible linearization spaces.

2.1 The kernel trick

There is an interesting observation about the linearization function that was
used in the foregoing example. The standard inner product between two input
vectors in the linearization space can be calculated without having to explicitly
map the data into the linearization space. For two points x and y in R

2

〈Φ(x), Φ(y)〉 = x2

1y
2

1 + 2x1x2y1y2 + x2

2y
2

2 = 〈x, y〉2 .

A more general result can be proved. For an n dimensional input space a class of
popular and flexible linearization functions is given by all monomials of degree d.
A monomial of degree d takes the product of d components of an input vector
x. E.g., for n = 5 the following are monomials of degree d = 3: x3

1
, x1x2x5

and x2

2x4. The possible number of monomials is given by choosing d out of n

with replacement. The order does not matter because of the commutativity
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of the product. However, for simplicity let us consider a linearization function
that takes all nd possible ordered monomials. Thus, x1x2x3 is a dimension in
the new space but x2x3x1 would be another dimension. For the linearization

function Φ′ : R
n 7→ R

nd

that computes all ordered monomials it holds that

〈Φ′(x), Φ′(y)〉 =

n
∑

i1=1

n
∑

i2=1

...

n
∑

id=1

xi1xi2 ...xid
yi1yi2 ...yid

=

n
∑

i1=1

xi1yi1

n
∑

i2=1

xi2yi2 ...

n
∑

id=1

xid
yid

=

(

n
∑

i=1

xiyi

)d

= 〈x, y〉d .

Calculating the inner product in the linearization space is the same as taking
the inner product in the original space and taking it to the power of d. Compu-
tationally, this is an extremely attractive result. Remember that a high number
of dimensions is needed to make the linearization space sufficiently flexible to be
useful. If calculated naively the computational effort of the inner product in the
linearization space scales with its dimensions. However, this result shows that,
in the case of a monomial linearization function, it is not necessary to explicitly
map the vectors x and y to the nd dimensional linearization space to calculate
the dot product of the two vectors in this space. It is enough to calculate the
standard inner product in input space and take it to the power of d.

The function k(x, y) := 〈Φ(x), Φ(y)〉 = 〈x, y〉d is our first example of a
kernel, the so-called polynomial kernel. Intuitively, kernels can provide a way
to efficiently calculate inner products in higher dimensional linearization spaces.
They also provide a convenient non-linear generalization of inner products. With
the help of a kernel, it is easy to build non-linear variants of simple linear
algorithms that are based on inner products. This is called the kernel trick in
the machine learning literature.

Take as an example the prototype classifier, again. Instead of taking the
mean in input space, like in Eq. (5), one can construct a prototype classifier
in the linearization space. We will take the threshold θ to be a free parameter
that we can tune to account for biases. For the left hand side we now want
to take the mean in the linearization space, that is the mean after we applied
the mapping Φ. To decide whether x belongs to class A we also map x to the
linearization space and check that

*

1

|A|

X

aεA

Φ(a) −
1

|B|

X

bεB

Φ(b), Φ(x)

+

> θ

1

|A|

X

aεA

〈Φ(a), Φ(x)〉 −
1

|B|

X

bεB

〈Φ(b), Φ(x)〉 > θ

1

|A|

X

aεA

k(a, x) −
1

|B|

X

bεB

k(b, x) > θ, (11)

where as before A and B are sets of patterns from two classes and the linearity

12



of the inner product and the sum were used.
The input space could be a 16 × 16 matrix of pixel values, that is a 256

dimensional space. The linearization space could be all monomials of degree 10.
Mapping the inputs to the linearization space and calculating the mean there
would be prohibitive as the mapping of each input to this space takes a large
number of dimensions. Despite the high number of dimensions it is possible to
use a prototype classifier in the linearization space by taking advantage of the
kernel trick. By using the kernel trick it is not necessary to calculate the mean
in the linearization space but a prototype classifier can still be used by using
Eq. (11).

In psychology, monomial linearization functions have been used before, for
example, in the configural-cue model by Gluck and Bower (1988). They used a
linear perceptron with monomial features for modeling the categorization data
of Shepard et al. (1961). They also noted that increasing the number of input
dimensions with monomials increases the capabilities of a perceptron similar to
increasing the number of hidden units in a multi-layer perceptron—however, in
an inelegant way because the number of monomials increases drastically with the
number of features. Therefore, the number of weights that have to be adapted
also increases drastically. The above result shows that it is possible to calculate
the response of a perceptron, for example when the weights are adapted by using
the prototype rule (but also using other learning rules), without actually having
to compute all monomials. In fact, neither the monomials nor the weights in the
linearization space have to be computed to evaluate the prototype-perceptron
in Eq. (11).

2.2 Reproducing kernel Hilbert space

Every linearization function Φ defines a kernel function via

k(x, y) = 〈Φ(x), Φ(y)〉 . (12)

It is always possible to define a kernel by choosing a linearization function
Φ and an inner product. The function k(·, ·) can be evaluated by explicitly
mapping patterns to the linearization space and calculating the inner product
in the linearization space. However, as the example of the polynomial kernel has
shown, sometimes it is not necessary to actually compute Φ. It is natural to ask
under what circumstances does a function k(·, ·) implement an inner product
in a linearization space and what does the corresponding linearization space
and linearization function look like. As it turns out there is a well-developed
branch of mathematics that deals with these questions: Functional analysis.
In short the answer is that if k(·, ·) is a symmetric and positive definite kernel
then k implements an inner product in a linearization space. Constructing a
linearization space and an inner product for a positive definite kernel is the
purpose of this section.

First, the introduction of some notation is required. For a set of patterns x1

to xN and a function k(·, ·) of two arguments the kernel matrix is the matrix

13



that collects all pairwise applications of k to the patterns. Let us denote this

N ×N matrix with K and denote the entry in the ith row and jth column with
kij then

K with kij = k(xi, xj)

is called the kernel matrix or Gram matrix for the patterns x1, ..., xN . A real and
symmetric function k(·, ·), that is a function with the property k(x, y) = k(y, x),
is called a positive definite kernel if for all choices of N points the corresponding
kernel matrix K is positive semi-definite, that is for all N -dimensional vectors
w

wT Kw ≥ 0. (13)

Note that for a matrix to be positive semi-definite we do not require that equality
only holds for w = 0 (as opposed to the definition of a positive definite matrix,
see Eq. 8). As K is only positive semi-definite it can have eigenvalues that are
zero and does not have to be full rank. This definition of a positive definite
kernel seems confusing because for a kernel to be positive definite we require
the corresponding kernel matrices to be positive semi-definite. However, the
definition we give is the usual definition used in machine learning and therefore
we will use it, too (Schölkopf and Smola, 2002).

With the definition of a positive definite kernel in mind, it is possible to
construct a vector space, an inner product, and a linearization function such
that the kernel condition (12) is fulfilled. In the following, these three steps are
demonstrated in a purely formal way. After that, the formal steps are illustrated
by an example, using the Gaussian kernel.

2.2.1 Step 1: Constructing a vector space

The vector space will be a space of functions constructed from the kernel. Let
k(·, x) denote a function that is taken to be a function of its first argument with
a fixed second argument. The vector space is then defined as all functions of
the form

f(x) =

N
∑

i=1

wik(x, xi). (14)

Each function in the space is a linear combination of kernel functions k(·, xi)
and can be expressed by some set of N patterns x1, ..., xN with real coefficients
w1, ..., wN . It is important to realize that these N patterns could be different
for different functions. All functions are linear combinations of kernel func-
tions given by k and because they are linear combinations they define a vector
space—functions can be added and multiplied with scalars. When functions are
added potentially all the kernel functions of the two added functions need to be
included in the expansion of the summed function but the sum will still be in
the vector space.

The expansion of f given in Eq. (14) might not be unique. There is no
requirement in the definition of f that the kernel functions need to be linearly
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independent. If they are not independent then the same function can be ex-
pressed in different ways. The function space is the span of the generating
system of functions. If there is an infinite number of potential independent
kernel functions then the vector space is infinite dimensional, even though each
function f can be expressed by a finite sum.

2.2.2 Step 2: Constructing an inner product

Next we will equip this vector space with an inner product. A possibly infinite
dimensional vector space with an inner product is called a pre-Hilbert space. If
the limit points of all Cauchy sequences are included in the space, the space is
completed and turned into Hilbert space proper. Completeness is, for example,
important for defining unique projections. We will ignore these technicalities
here (Schölkopf and Smola, 2002, but see) and simply note that Hilbert spaces
can be thought of as the possibly infinite dimensional generalization of Euclidean
spaces. Take a function f with an expansion given by Eq. (14) and let g(x) =
∑M

i=1
vik(x, yi) be another function from this space then we can define the inner

product between the two functions f and g as

〈f, g〉H =
N
∑

i=1

M
∑

j=1

wivjk(xi, yj). (15)

In order to distinguish the inner product in Hilbert space from the normal inner
product in Euclidean space we have added the little index H. We have to show
that this definition is indeed an inner product. First we have to show that
it is well-defined. The particular expansions of f and g that are used in the
definition might not be unique, as mentioned above. Fortunately, the definition
(15) does not depend on the particular expansions of f and g that are used

to calculate the inner product. To see this, let f(x) =
∑N ′

i=1
w′

ik(x, x′
i) and

g(x) =
∑M ′

i=1
v′ik(x, y′

i) be two new expansions of f and g that are different from
the ones used in the definition of the inner product (15). They will, however,
result in the same inner product because

N
∑

i=1

M
∑

j=1

wivjk(xi, yj) =
N
∑

i=1

wig(xi)

=

N
∑

i=1

M ′

∑

j=1

wiv
′
jk(xi, y

′
j)

=

M ′

∑

j=1

v′jf(y′
j)

=

N ′

∑

i=1

M ′

∑

j=1

w′
iv

′
jk(x′

i, y
′
j).

(16)
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Therefore, (15) is indeed well-defined. To show that it is an inner product it
also has to be symmetric, linear in its arguments and positive definite. As k

is symmetric in both arguments the above definition is also symmetric. It is
obviously linear because of the linearity of the sum. Positive definiteness means
that 〈f, f〉H ≥ 0 where equality only holds for f = 0. Note that 〈f, f〉H =
wT Kw by definition. As the defining property of a positive definite kernel is that
the kernel matrix K is always positive semi-definite (Eq. 13), it is immediately
clear that 〈f, f〉H ≥ 0. Definiteness is a bit more tricky but it can be proved
that for all positive definite kernels definiteness of (15) holds (Schölkopf and
Smola, 2002). Hence, all positive definite kernels can define an inner product in
the above way. This may also justify calling these kernels positive definite.

2.2.3 Step 3: Constructing a linearization function

Each kernel function k(·, x) with a fixed x is trivially contained in the vector
space. It is simply an expansion with only one kernel function and a weight of
one. Therefore, the inner product (15) of this function with a function f that
has N coefficients wi and kernel functions k(·, xi) is

〈k(·, x), f〉H =

N
∑

i=1

wik(x, xi) = f(x), (17)

by the definition of the function space (Eq. 14). This is a remarkable fact:
The inner product with the function k(·, x) evaluates the function f at point x.
Therefore k(·, x) is also called the representer of evaluation. Another remarkable
property directly follows from the definition of the inner product (15)

〈k(·, x), k(·, y)〉H = k(x, y) (18)

because each of the two kernel functions has a simple expansion with just one
summand and a coefficient of one. Due to these two properties the linear space
of functions as given in Eq. (14) with the above dot product 〈·, ·〉H is called
a reproducing kernel Hilbert space (RKHS) in functional analysis (if it is com-
pleted).

Now, a linearization function can be defined in the following way Φ(x) :=
k(·, x). Because of the reproducing property the kernel condition k(x, y) =
〈Φ(x), Φ(y)〉H holds for this linearization function. The linearization space is a
space of functions over the x. The linearization function that was constructed
maps each point x in the input space to a function k(·, x) in the linearization
space.

Remember what is accomplished by this. Starting from a positive definite
kernel a vector space, an inner product and a linearization function were con-
structed such that the kernel condition (12) holds. If the kernel is easy to
calculate then by means of the kernel it is possible to calculate inner products
in the linearization space without actually mapping the points x and y into it.
Understanding this trick opens up a box of new non-linear tools for data anal-
ysis. Any method where the linearization space only occurs in inner products
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of the form (12) can benefit. In fact, there is now a long list of familiar linear
methods that have been kernelized. This list includes kernel principal compo-
nent analysis (Schölkopf et al., 1998) and many others (Schölkopf and Smola,
2002).

2.3 Gaussian kernel example

The Gaussian kernel has frequently been used in psychology to model the simi-
larity between two mental representations x and y (Nosofsky, 1986, 1990; Ashby
and Maddox, 1993). It is defined as

k(x, y) = exp−‖x−y‖2

. (19)

A standard result in functional analysis is that the Gaussian kernel is a positive
definite function and that any kernel matrix K resulting from the Gaussian
kernel is always full rank (Schoenberg, 1938; Schölkopf and Smola, 2002). We
will not prove these two facts but we will take them for granted in what follows.
The fact that the kernel matrices are always full rank and therefore positive
definite (and not just semi-definite) is important and should be kept in mind.

2.3.1 Step 1: Constructing a vector space

As a vector space we take all functions that can be expressed as a linear com-
bination of Gaussian kernel functions (see Eq. 14). One example of such a
function is shown in Figure 5. The Gaussian functions are depicted with dotted
lines. Their height is scaled with the weight wi that each function receives in the
sum. Summing the Gaussian functions results in the solid function. It is easy to
imagine that by changing the weights and adding more Gaussian functions very
different functions can be implemented or at least approximated. While each
function is a finite sum, the space includes all functions that can be expressed
in this way with infinitely many different choices for Gaussian functions. In
fact, there are uncountably many choices because each point on the axis is a
potential candidate for a Gaussian functions centered on this point. For this
reason this vector space does not have a finite dimensional basis. It is not possi-
ble to describe all functions that are spanned by the Gaussian functions with a
finite number of basis functions. We have an example of an infinite dimensional
space—that however in many respects is similar to the ordinary finite dimen-
sional vector spaces that are the subject of linear algebra. For example, this
infinite dimensional space can also be equipped with an inner product.

2.3.2 Step 2: Constructing an inner product

Eq. (15) defines an inner product that can be used. With the inner product on
the function space it is possible to define a norm and a metric on the space in
the same way as it is done in Euclidean spaces. One can even calculate angles
between functions. Let us, for illustration, calculate the angle between two
Gaussian functions. This is done in the same way as in Euclidean spaces (see
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Figure 5: An example of a function from the linear function space defined in Eq.
(14). Each function in the space is a linear combination of generating functions

that are given by the kernel: f(x) =
∑N

i wik(x, xi). Here we have depicted
seven Gaussian basis functions as dotted lines. Their height is proportional to
their weight wi. The sum of these is shown with the solid line. All functions
that can be expressed as such a linear combination of kernel functions are in
the function space.
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Eq. 4). First note that each Gaussian function has a trivial expansion in the
function space. It is simply itself with a weight of one. The norm of a Gaussian
function is one because

‖k(·, x)‖2
= 〈k(·, x), k(·, x)〉 = k(x, x) = exp−‖x−x‖2

= 1 (20)

which is only using the definition of the inner product (15) and the Gaus-
sian kernel. Therefore, the cosine of the angle between two Gaussian func-
tions is directly given by the inner product. As two Gaussian functions each
have an expansion with only one weight that is set to one their inner product
is 〈k(·, x), k(·, x)〉 = k(x, y), which is of course the reproducing property (18).
Hence, k(x, y) can be interpreted as the cosine of the angle between two Gaussian
functions centered on x and y, respectively. This has interesting consequences.
For two non-identical points x and y it holds that 1 > k(x, y) > 0. Therefore,
the angle between two Gaussian functions lies between 0 and 90 degrees. The
further two Gaussians are apart the greater is their angle. Functions that are
far apart are almost orthogonal. This makes sense because they span different
parts of the function space. But as no two Gaussians are completely orthogonal
it also means that the Gaussian functions do certainly not form an orthogonal
basis of the function space. We have noted before that for the Gaussian kernel
the kernel matrices (that collect all pairwise inner products of the Gaussians)
are always full rank, hence any number of Gaussian functions are always linearly
independent and therefore form a basis for the subspace that they span.

2.3.3 Step 3: Constructing a linearization function

The linearization function Φ maps points from the space in which x is defined
to a space of functions over all possible x. In the example of the Gaussian kernel
this means that we map a point x to the function k(·, x), a Gaussian function
centered on x. In a psychological setting imagine x to be the representation of
a stimulus in some perceptual space. Imagine further that k is interpreted as a
similarity measure. The further two stimuli are apart the less similar they are
and this relationship is captured in the Gaussian kernel. Mapping a stimulus x

to the function k(·, x) means replacing a stimulus with its similarity to all other
stimuli. Representation in this RKHS is literally representation of similarities
(Edelman, 1998). In a companion paper we discuss some consequences of this
observation in more detail (Jäkel et al., 2007b). Here, it suffices to say that
calculating similarity by a Gaussian function is the same as taking an inner
product in the corresponding RKHS that was constructed above.

2.4 Prototypes and exemplars

Let us stay with the example of the Gaussian kernel (19) for a while. Keep in
mind that in a psychological setting the Gaussian kernel k(x, y) is interpreted
as the similarity between two stimuli x and y. To see the potential of the RKHS
view of the Gaussian kernel for psychological theorizing, imagine we construct
a prototype classifier in RKHS according to inequality (11). Let us assume that
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the bias parameter θ is set to zero. In this case, for a prototype classifier in the
linearization space we decide that x belongs to class A and not to class B if
Φ(x) is closer to the mean of the stimuli in A than in B. This can be done by
checking that

1

|A|
∑

aεA

k(a, x) >
1

|B|
∑

bεB

k(b, x), (21)

that is the mean similarity of x to all exemplars of class A is bigger than the
mean similarity to all exemplars of class B. The left side of the inequality (if
appropriately normalized) can be interpreted as a kernel-density estimate for the
class density of A (Ashby and Alfonso-Reese, 1995). It can also be interpreted
as an estimate for the degree that a new x belongs to A. In any case, this
is the most basic exemplar model of categorization, but it was derived from a
prototype classifier.

2.5 Infinite dimensional perceptrons

Remember that the reason why we introduced the kernel trick was that a flexible
preprocessing is needed so that a linear classifier can solve many non-linear
categorization problems. In the previous section we examined the prototype
classifier in an infinite dimensional function space, in this section we examine
linear perceptrons in such a space. It will turn out that a linear classifier in an
infinite-dimensional space can separate all possible stimuli in two classes.

Formally, a perceptron with a preprocessor Φ is given by an inner product of
the pattern x mapped to a linearization space and a vector w in the same space:
〈w, Φ(x)〉. Let us choose the infinite dimensional linearization space to be the
RKHS that is associated with a suitable kernel, for example the Gaussian kernel.
The perceptron in this RKHS is then defined by the inner product between two
functions. The pattern x is preprocessed by the function Φ(x) := k(·, x) which
maps x to the function that describes its similarity to all other stimuli. The role
of the weight vector w in the classical perceptron (10) is taken by the coefficients
for a function in the RKHS. Let us denote this function with f . As before—see
equation (17)—we denote the coefficients that f takes in the expansion given
by the kernel functions with w. With this notation an infinite dimensional
perceptron can be written as:

〈f, Φ(x)〉H = 〈f, k(·, x)〉H =

N
∑

i=1

wik(x, xi) = f(x). (22)

As k(·, x) is the representer of evaluation (17), the inner product of f with the
pattern x mapped to the linearization space is just f evaluated at x. If f(x) is
greater than a threshold the pattern x is categorized as one class otherwise as
the other class.

The learning problem for an infinite-dimensional perceptron is then to find a
suitable function f in the RKHS that can categorize the patterns under consid-
eration correctly. It may seem that this is a difficult problem because we have
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to find a function in an infinite dimensional space rather than a weight vector in
a finite dimensional space as for the perceptron. However, there is a simple so-
lution for f . Say, a subject wants to learn to discriminate between two different
categories of stimuli. The subject is given a training set of N exemplars x1, ...,
xN . Each stimulus has a class label that we denote with y1, ..., yN . The class
label yi for pattern xi can be either +1 or −1, depending on which category xi

belongs to. We will treat the categorization problem like a regression problem.
The aim of the category learner is to find a function f defined on the perceptual
space such that f(x) is +1 whenever x belongs to one class and −1 when x is in
the other class. Instead of searching for the best function in the whole RKHS
we will only consider a subspace of all functions in the RKHS and show that in
this subspace there is a function that can solve the regression problem perfectly.
The subspace we consider is all linear combinations of the kernel functions on
the exemplars:

f(x) =
N
∑

i=1

wik(x, xi). (23)

The output of this function can be thought of as calculating a weighted similarity
to all exemplars. This function is a linear combination of kernel functions. As
all kernel functions are in the RKHS their linear combinations are also in the
RKHS. Therefore, for a fixed set of N exemplars their linear combination spans a
subspace of the RKHS that is at most N -dimensional. We refer to this subspace
as the span of the exemplars. The span of the exemplars seems to be a only a
small subset of all the functions in the infinite dimensional RKHS but it contains
a function that solves the regression problem perfectly.

Finding a function f of the form (23) that solves the regression problem
means finding weights w1, ..., wN for the exemplars such that for all j: f(xj) =
yj. We introduce an N -dimensional vector y for the N labels. As we are only
interested in the values that the function f takes on the exemplars xj (with j

from 1 to N) we only need to evaluate (23) at these values:
∑N

i=1
wik(xj , xi).

Let us use a vector w for the weights and using the same notation as before
we write K for the matrix that collects all pairwise evaluations of k on the
exemplars. Hence, the weights that we seek should solve y = Kw. If K has full
rank—as the Gaussian kernel for example guarantees—then K is invertible and

w = K−1y. (24)

There is a unique vector of weights that solves the classification problem per-
fectly. If K has full rank this is always possible irrespective of the set of ex-
emplars and their category labels1. As there is a solution in the span of the
exemplars we do not need to work with the infinite dimensional RKHS to find
a solution for the categorization problem in the RKHS.
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Figure 6: A RBF-network calculates a weighted sum over the responses of N

cells with ‘tuning curves’ given by k.
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2.6 Neural networks

The solution to the categorization problem that was discussed in the previous
section can be understood as a weighted similarity to the exemplars. Exemplar
models like this one can be implemented as a neural network. Imagine a cell
that by means of learning has become sensitive to a particular stimulus y—its
preferred stimulus. It will still fire if another stimulus x is sufficiently similar
to the preferred stimulus. The way that the firing rate of the cell changes with
changes in the stimulus is described by its tuning curve that can be modeled by
a function like the Gaussian kernel2. A simple one layer neural network with
several cells that are tuned to certain exemplars, x1 to xN , is depicted in Figure
6. Each cell responds to a stimulus x according to its tuning curve, given by
k. The activity of all cells is collected by an output neuron that computes a
weighted sum of its inputs. The function that this network implements was
already given in equation (23).

In the neural network literature a function of the distance between two stim-
uli is called a radial basis function (RBF) kernel. The Gaussian kernel is the
most prominent example for a radial basis function. As neural tuning curves
are often found to have a shape like a radial basis function, RBF-networks have
repeatedly been advocated as a model for brain function by Poggio and cowork-
ers (Poggio and Girosi, 1989; Poggio, 1990; Poggio and Bizzi, 2004). They have
also studied the link to reproducing kernel Hilbert spaces. From a mathematical
view-point the problem they are addressing is the learning of an unknown func-
tion. Their approach motivates the use of kernels from a function approximation
and regularization view.

3 Regularization

By using the exemplar network with as many free parameters as stimuli it is
always possible to find weights such that the network can classify all training
stimuli perfectly. The price for this flexibility is the danger of overfitting. A
network may learn to categorize all training stimuli perfectly but only because
it has learned the stimuli by heart. Any regularity in the data is overlooked in
this way and therefore the network will not be able to generalize. An example
for overfitting is shown in Figure 7. Crosses and circles depict exemplars from
two different categories. The two categories are defined by two overlapping
Gaussian probability distributions. As we know the distributions that generate
the stimuli we can calculate the optimal decision bound which for two Gaussians
is a quadratic function (Ashby and Maddox, 1993). The dashed line is this
optimal decision bound. The grayscale values depict the function f that was
obtained by calculating exemplar weights with a Gaussian kernel as given in

1However, note that K might be close to singular in practice.
2One important difference between tuning curves being modeled by a Gaussian and psy-

chological similarity that is often also modeled by a Gaussian is of course that similarity is

calculated between mental representations whereas tuning curves are usually based on physical

measurements.
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Figure 7: Stimuli from two categories are classified by an exemplar networks as
given in equations (23) and (24). The solution is overfitted, that is the training
stimuli can be categorized perfectly but generalization to new stimuli will be
poor. The optimal decision bound for this category learning problem is shown
as a dashed line.

Eq. (24). The solid line is the contour line where f(x) = 0. On one side of
this contour line the infinite dimensional perceptron would classify stimuli as
belonging to one class, on the other side stimuli are classified into the other
class. It can be seen that all training stimuli are categorized correctly. The
resulting decision bound is obviously not very reasonable, and also very different
from the optimal decision bound. Intuitively speaking, the decision bound that
the exemplar network calculates is too complicated. The regression function
f should not be allowed to vary so wildly and the decision bound should be
smoother and less complicated.

One popular strategy to avoid overfitting is regularization (Bishop, 1995;
Schölkopf and Smola, 2002; Poggio and Smale, 2003). In regularization there is
an additional constraint on the function f that is sought: The function should
not only fit the data it should also be smooth and not too “complex”. To this end
a penalty term is introduced that penalizes functions for being complex. Many
modern model selection criteria can be seen as penalizing complexity (Pitt et al.,
2002). Instead of only minimizing the error on the training exemplars, which
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can always be done perfectly, the error plus a penalty term is minimized. The
penalty term is also called regularizer.

Let us denote the error that a function f makes on the training exemplars
with c(f). Possible examples for such a cost function are the number of misclas-
sifications or the mean square error. If we denote the penalty term by Ω then
the function that one seeks to minimize becomes

L(f) = c(f) + Ω(〈f, f〉H). (25)

The penalty term is chosen as a strictly increasing function Ω of ‖f‖2

H = 〈f, f〉H,
the squared norm of the function in the RKHS that the kernel defines. The
learning problem is now understood as trying to find a function f that minimizes
L.

3.1 The representer theorem

Ideally, one would like to find the function f that minimizes the regularized error
L over all functions in the RKHS. Perhaps surprisingly, the optimal function
can be represented as an expansion of the exemplars as given in equation (24).
This result is called the representer theorem. It shows that for a large class of
problems the optimal solution over all functions in the RKHS lies in the span
of the exemplars. If the aim of a function learner (be it a brain or a machine)
is to minimize a regularized loss then it makes sense to restrict the learning
mechanism to an exemplar network of the form (23). The proof that is given by
Schölkopf et al. (2001) is short, and it illustrates the power of the RKHS-view
of kernels.

As f is in the RKHS we can split it up into a part f‖ that lies in the span
of the exemplars (23) and a part f⊥ that is orthogonal to it. For the first term
c(f) in the regularized loss function L(f) we need to evaluate f = f‖ + f⊥

only on the exemplars x1, ..., xN . Remember that k(xi, ·) is the representer of
evaluation for xi and therefore (see Eq. 17)

f(xi) = f‖(xi) + f⊥(xi) = f‖(xi) +
〈

f⊥, k(xi, ·)
〉

H
.

The second term is zero because by definition f⊥ is orthogonal to k(xi, ·). Hence,
the cost function c(f) is independent of f⊥. For the penalty term note that

Ω(〈f, f〉H) = Ω
(〈

f‖, f‖
〉

H
+ 2

〈

f‖, f⊥
〉

H
+
〈

f⊥, f⊥
〉

H

)

= Ω
(〈

f‖, f‖
〉

H
+
〈

f⊥, f⊥
〉

H

)

.

For a minimizer of L the orthogonal part f⊥ has to be zero. To see this assume f

is a minimizer but f⊥ is not zero. As Ω is strictly increasing L can be decreased
by choosing f⊥ to be zero and hence f was not a minimizer—in contradiction
to the assumption. Therefore, the best function in the whole RKHS is given by
an expansion of the exemplars (23).
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The importance of the representer theorem is that if the regularizer can be
cast as a strictly increasing function Ω of 〈f, f〉H then the optimal solution over
the whole RKHS is a linear combination of kernel functions centered on the
exemplars. Therefore, it is not necessary to work in the infinite dimensional
function space to find the best function in it. To find the best function one only
has to adjust the exemplar weights. Furthermore, the single best function can
often be found analytically or with simple numerical procedures. In fact, kernel
methods in machine learning are often derived by starting from a regularized
loss and providing a method that can find an optimal solution in the span of the
exemplars. All this makes exemplar networks so attractive for machine learning
and perhaps this can also provide a theoretical justification for assuming a
psychological mechanism that is based on storing exemplars. Exemplar models
in psychology simply assume that all exemplars are stored without giving a
rational explanation why this should be done. If the objective of a subject
could be phrased in terms of a regularized loss of the above form (as it is often
done is statistics and machine learning) then, as we know that the optimal
solution lies in the span of the exemplars, we would have an argument for using
exemplar in the first place.

3.2 Regularization example

To understand the rationale behind regularization better and to appreciate the
representer theorem it is helpful to look at a more concrete example.

Let us assume the learning proceeds by trying to find a regression function
f that minimizes a certain loss L(f) that has two components: One component
c(f) that depends on the error on the training stimuli and a component Ω(〈f, f〉)
that penalizes the function’s complexity (see Eq. 25, above). As a measure for
the error that the learner makes on the training examples we will take the mean
square error: c(f) :=

∑N

j=1
(f(xj) − yj)

2. The squared loss is not the most
reasonable loss function for a categorization problem. However, it has been used
in psychology before and might be justified by the Rescorla-Wagner rule (Gluck
and Bower, 1988). ALCOVE, a prominent exemplar model, for example, uses a
different loss function (Kruschke, 1992). Intuitively, it seems better to minimize
misclassifications directly and from a statistical view-point one would want to
minimize the negative log likelihood. However, we have chosen to minimize the
mean square error because it is conceptually easier. For the penalty term Ω we
have chosen the simple case where it is linear with a positive parameter λ. The
loss function (25) then becomes:

L(f) =

N
∑

j=1

(f(xj) − yj)
2 + λ 〈f, f〉H ,

where yj is the value that the function should output on exemplar xj . The
parameter λ can be thought of as controlling the trade-off between a good fit
and the penalty.
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Above we have—perhaps a bit hand-wavingly—referred to the effect of reg-
ularization as penalizing “complexity”. We can understand what the regular-
ization in equation (25) does by looking at the form of the penalty term which
depends on the squared norm 〈f, f〉H of the function f . Because of the repre-
senter theorem the optimal function is of the form (24) and we can rewrite the
squared norm of the optimal function as

〈f, f〉H =

〈

N
∑

i=1

wik(xi, ·),
N
∑

j=1

wjk(xj , ·)
〉

H

=
N
∑

i=1

N
∑

j=1

wiwj 〈k(xi, ·), k(xj , ·)〉H

=

N
∑

i=1

N
∑

j=1

wiwjk(xi, xj)

= wT Kw,

where we have used the linearity of the inner product and the reproducing
property. In the regularizer the weights of the function f are multiplied by
the similarity of the respective exemplars. In order to make two very similar
exemplars output very different function values it is necessary to use very big
exemplar weights. As large weights for similar exemplars can only be achieved
at a high penalty the regularized function respects the similarity measure better
than the non-regularized solution in Figure 7.

As we know by the representer theorem that the optimal function is of the
form (24) minimizing L(f) is equivalent to finding exemplar weights w such that

L(f) =

N
∑

j=1

(

N
∑

i=1

wik(xi, xj) − yj)
2 + λ(wT Kw)

= (Kw − y)T (Kw − y) + λ(wT Kw)

= wT (KK + Kλ)w − 2yT Kw + yT Ky

is minimal. The optimal weights can be found analytically by differentiating this
quadratic loss function with respect to w. Setting to zero to find the optimum
leads to the following solution for w:

2(KK + Kλ)w − 2Ky = 0

(KK + Kλ)w = Ky

(K + λI)w = y

w = (K + λI)−1y.

The Hessian of the quadratic function L is given by (KK +Kλ). If the Hessian
is a sum of two positive definite matrices it will be positive definite itself. In
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this case the solution for w is the unique minimum. A regularized solution for
f for the same problem as in Figure 7 is shown in Figure 8. The regularized
solution is less complicated and looks more reasonable than the non-regularized
solution.

The regularized solution is also known as ridge regression. The non-regularized
solution (24) can be recovered from ridge regression by setting the regularization
parameter λ to zero. In this case the weights are simply calculated by taking
the inverse of K. In the case where λ is large and (K +λI) is dominated by the
diagonal matrix λI the weights all have the same absolute value and only vary
in their sign. The decision bound in this case is identical to the kernel density
estimators given in equation (21). In this extreme the decision bound is only
determined by the similarity measure and not by the exemplar weights. Hence,
the regularization parameter λ makes it possible to choose a solution that is in-
between the two extremes: A weight based solution (24) that will always overfit
and a similarity based solution (21) with all exemplar weights set to the same
value. By allowing this extra flexibility it is often possible to achieve a better
generalization performance than by relying on similarity alone. Of course, the
value of the regularization parameter λ has to be chosen wisely. In machine
learning this is considered as a model selection problem. One way to find a
suitable regularization parameter is by using cross-validation and this is what
we have done in Figure 8, too (Schölkopf and Smola, 2002; Pitt et al., 2002).
Both, the chosen kernel and the regularization parameter, will determine how
well the classifier will generalize to new patterns. It is in the construction of
the kernel, however, that engineers can use their insights about a classification
problem and their intuitions about the similarity of patterns.

4 Conclusions

We have introduced kernel methods as they are used in machine learning. The
most important results here are the kernel trick and its link to reproducing ker-
nel Hilbert spaces. On the way we have hinted to parallels with psychological
theories. First, kernel methods can be implemented as a one-layer neural net-
work. Second, the Gaussian kernel can be interpreted as a similarity measure
and representation of the stimuli in a RKHS can be seen as representing the
stimuli via their similarity to all other stimuli. Third, the most simple exemplar
model of categorization is a prototype classifier in this RKHS. Fourth, regu-
larization can be used to avoid overfitting. And fifth, the representer theorem
shows that the best regularized function in RKHS can often be found in the
span of the exemplars.

In a companion paper (Jäkel et al., 2007b), we describe how the RKHS frame-
work arises naturally from Shepard’s universal law of generalization. Shepard’s
law is closely related to geometric models of similarity and multi-dimensional
scaling. Geometric models have been heavily criticized by Tversky and co-
workers (Beals et al., 1968; Tversky, 1977; Tversky and Gati, 1982). One of
their major criticisms concerns the assumption of the triangle inequality that is
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Figure 8: The same categorization problem as in Figure 7 but this time a
regularized solution is shown. The regularized decision bound (solid line) is
quite close to the optimal decision bound (dashed line).
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implicit in all geometric models. However, from the data that are available the
triangle inequality is unproblematic as an assumption as long as it is not paired
with a second assumption that is known as segmental additivity. The RKHS
provides an elegant framework for metric models without segmental additivity.

From this tutorial it should be obvious that exemplar models and kernel
methods are based on the same ideas. Their relationship is discussed in greater
detail in another forthcoming paper (Jäkel et al., 2007a). Briefly, two very
prominent exemplar models, the Generalized Context Model (Nosofsky, 1986)
and ALCOVE (Kruschke, 1992), both make use of kernels but in different ways.
Only ALCOVE can be mapped directly to a machine learning method and even
exhibits some regularization.

We imagine other potential uses for the mathematical tools we have pre-
sented. First of all, we hope that this tutorial opens up the recent machine
learning literature for more psychologists. Many of the data analytic meth-
ods presented in machine learning could be used in psychology—irrespective
whether they use the RKHS framework that was the focus here. For example,
machine learning methods have been used in psychophysics (Wichmann et al.,
2005; Graf et al., 2006) and we believe that many more applications will follow.
With regard to Hilbert spaces one can be skeptic whether the infinite dimen-
sional machinery is really necessary for psychological modeling. However, there
are many cases where the data that are collected are in terms of functions and
therefore naturally described with methods similar to the ones described here
(Ramsay and Silverman, 1997). Furthermore, several other authors have re-
cently suggested to use infinite dimensional spaces in the theoretical analysis of
behavior (Drösler, 1994; Townsend et al., 2001; Zhang, 2006). In the laboratory,
stimuli are almost always defined by a small number of independent variables,
and those are the stimuli that we used as examples in this paper. In these
examples the approach was to map stimuli from a space with a small number
of dimensions to an infinite dimensional space. More realistic stimuli will vary
in a plethora of ways and not just along a small number of well-defined dimen-
sions. Infinite dimensional spaces could be attractive for describing such natural
stimuli—take for example the features of a face, the shape of a leaf, or the spec-
trum of a light source. Also the number of channels that humans use to analyze
these stimuli might be very large—too large to enumerate them explicitly. The
tools we presented in this tutorial might be useful for this enterprise.
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